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Abstract

This paper considers the Bayes smoothing problem for a time varying regres-
sion model with unknown noise variance parameters. Using the prediction error
decomposition, an approach is developed that provides the exact pdf of the regres-
sion coeflicients and the noise variance parameters. In addition, the paper provides
a discussion, and an example, of Monte Carlo numerical integration procedures that

can be used to generate estimates of the moments of the smoothed coefficients.

1. Introduction
In this paper we are concerned with the smoothing problem in a bivariate time
varying regression (TVR) model when the variance parameters of the error terms are

unknown. The model we consider is the following

Yt = TPt + €, Bt =gife—1 +m (t=1,...,n) (1)

where ¢, are iid N(0,0?), the n, are iid N(0,\0?), (\,0% > 0), and ¢, and 75, are
uncorrelated for all  and s. We assume that {g;} is a fixed, nonstochastic sequence of
scalars. We further assume that the two variance parameters, o2 and X, are unknown.

An important issue in such models has been the choice of o, the initial value at
start up time 0. We assume that the parameter 3, is unknown with its uncertainty
expressed by a normal distribution N (,@om, 02R0|0), where the hyperparameters, ,5'0|0
and Ryg, are known.

The smoothing problem for models similar to (1) above have been analyzed by
several authors including Anderson and Moore (1979), Chow (1983), and Engle and
Watson (1988), using classical methods, and by Broemeling (1985) and Broemeling,
Diaz and Yusoff (1985) using Bayesian methods.

In this paper, we provide a Bayes solution to the smoothing problem. Essentially

the problem of smoothing is concerned with making inferences about the n x 1 regres-
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of total probability as:

o8ly™) o fly1,--->ynlf)
o« f(y18)F(valy’,0) - Fynly" ™, 0)

o?

nf2 n " i -

t=1

where fm_l,,\ and Jyj¢—1,x are produced by the KF, for each value of \. It is clear

from (9) that if we let the prediction error be denoted by j¢—1,1 where

Teje—1,0 = Yt — gtlt—l,)ﬁ (10)
then the likelihood function is produced in terms of the distribution of the prediction

errors. It is for this reason that (9) is referred to as the prediction error decomposition.

REMARK 1: In classical analysis, estimation of the parameter, 6§, is accomplished by

maximizing the likelihood function. The usual procedure is to fix fo, and then adopt

a Newton-Raphson algorithm to successively update the parameter values until the

log-likelihood is maximized. Unless the likelihood function is well behaved, such a

procedure can sometimes locate the wrong maxima, especially when the sample size

is small.

3. The Smoothing Problem

3.1 Posterior of 8

In order to make inferences about the vector of regression parameters f =
(By---2Pn) s x 1 when the variance parameter @ is unknown, we need to de-
rive the marginal posterior of 6 and the conditional posterior of 8 given y" and 6.
Then the unconditional posterior pdf of 8 is obtained by integrating out ¢ from the

latter distribution, i.e.,
w8l = [ =(Bly™, O)(6l™)0 (11)

where m(8|y™) is the posterior pdf of 8 specified in (2).
It is the purpose of this subsection to show that the posterior pdf of 8 in (11)
can be derived using the PED just described. It is, of course, necessary to specify

a useful prior for the variance parameter 6 that would allow the integration in (11)
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to be performed conveniently. It turns out that an informative Inverted Gamma
pdf of o? with known hyperparameters combines nicely with the likelihood function.
However, as far as the second variance parameter, ), is concerned no useful prior
seems available. The best practical strategy appears to be to use some locally uniform
prior pdf of \. We prefer the latter Bayesian method to the alternative of specifying
A and ignoring the prior uncertainty about its value.

In the light of the previous comments, we assume that o2 and ) are a priori
independent, with the prior of ¢? an informative, Inverted Gamma(“—;, %) density
with shape parameter "2—‘ and scale parameter %, and that of A specified in general
form as m(A), where m()) is possibly some locally uniform pdf. Thus, the joint prior
density of (¢%, ) is given by

m(0?, ) (0’2)”2;+16__2§0_‘7 -m(A), %, A>0, (12)

v* and 6* > 0 known. If we combine this prior with the observed likelihood function
in (9) and apply (2), then using (10) the posterior pdf of (02,)) is

"(Uza’\lyn) X 7r(02,/\)£obs(a2,/\|y")

L _ Ladn oy —#2—(5'4‘2:_ (Fele=1,3)2/ Fopem1,n)
o m(A) I:H(ftlt—l,/\) %j, (1/a%) * N - l (13)
t=1

where the normalizing constant is 1/ [ 7(6)€oss(8]y™)df. Observe that the posterior
pdf in (13) can be broken up into two pieces as

m(o®, Aly™) = w(a®|y™, A) - 7(Aly™),

where the conditional posterior pdf of ¢% given A and y" is an updated Inverted

Gamma,
(L52, 5 density with 63* = 6* + 37, 1 2l Fitt—1.3-

The second piece, the marginal posterior of A given y", is obtained by integrating
out 0% from (13). Thus we have the following.

THEOREM 1: Let the prior of (62, )) be as in (12). Then the conditional posterior

distribution of 0% given y™ and \ is

o?|y™, A ~ Inverted Gamma (v 2+n, 63 ) ; (14)

and the marginal posterior pdf of A given y" is

n n (—v*+n)/2
T(Aly") « n(A) [Hfg,l_/;} (6*+Z(gt,t_1,A)2/ﬂ.t_1,A> ()
t=1 t=1
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REMARK 2: If we wish to obtain the posterior pdf’s when the prior of ¢? is diffuse
and is given by Jeffreys pdf: w(c?) o 1/0?, all that has to be done is to set v* =0
and §* = 0 in (12)-(15).

REMARK 3: Unfortunately the posterior of A in (15), for any prior m()), does not
belong to a known parametric family of densities. Nonetheless, (15) can be analyzed
numerically, and the normalizing constant determined using Monte Carlo integration
procedures. The inverse of the normalizing constant, as stated before, is the integral
of the RHS of (15) over A. In any given application, it will be necessary to approxi-
mate 7(Aly™) by a parametric density. Approximating pdf’s that are symmetric are
probably not good choices in small samples since in the example discussed in the

next section, the pdf of A|ly™ is shown to be skewed.

3.2 The Conditional Smoothing Problem

We now derive the posterior distribution of g given y™ and 8 using a vector-
matbrix representation of (1) that allows us to appeal to known results from Bayes
analysis of linear models. The vector of smoothed estimates of 3 given 6 is then the
posterior mean of this distribution.

If we let € = (e1,€2,...,6n) :n X1, 0= (91,72,-..,7M) :nx1 and X =

diag(%1,...,2n) : m X n, equation (1) can be expressed in vector-matrix form as
y" =XB+e, €~ N,(0,0°1,) (16)
with the evolution equation of the regression parameters summarized as
Hp =efy +7, n ~ Nn(0,20% 1), (17)

where the matrix H is given in the simple form:

1 0 0
—4g2 1 0
H= 0 A L 0 noXn,

0 0 —gn 1.
and e = (¢1,0,...,0) is an n x 1 vector. Under this representation of the TVR
model, it is relatively straightforward to derive the posterior pdf of 8 given y™ and

6. Equation (17), along with the assumption that the distribution of 8y is Gy|8 ~
Nk(,30|0,02R0|0) imply that the prior of 8 given 8 is

Blo ~ No(p* = H_1€B0|07A;_1 . 021&;_1)



nadaka, & Tiwari

or of o2 is diffuse

e is to set v* =0

or 7(}), does not
) can be analyzed
- Carlo integration
ore, is the integral
essary to approxi-
are symmetric are

> discussed in the

d using a vector-
esults from Bayes

siven 6 is then the

- nx 1, and X =

natrix form as

(16)

ized as

(17)

ation of the TVR
of B given y" and
on of By is Bolb ~

B e = — e

Time Varying Regression 111

where A}™! = H leRyjpe’ H™Y' + AH ' H~". Consequently using standard calcula-
tions from Bayes analysis of linear models, we have that the distribution of 8 given
y™ and 6 is multivariate normal with mean vector Bx : n x 1, and variance matrix
Se:n Xn,ie,

Bly™,60 ~ Nu(Bx, T) (18)

where the posterior mean is the matrix weighted average
Br= (A5 + X'X)TH (A5 + X'y, (19)
and the posterior variance, which does not depend on y", is
So =2 (AY + X'X)™' = %), (20)

The smoothed estimate of 3, given 6, is given by (19). This estimator of g is,
optimal under the squared error loss function. Note that the smoothed value of 3,
ie., ,@,\ does not depend on 2.

The marginal posterior density of 8 given A and y™ can be obtained using (14),

and is given by

r(Bly™, A) = / 7 (Bly™, 0%, (o |y™, A)do?,

o?2>0

where from (18), 7(B|y", 0%, ) is the pdf of a Ny (f», 3.,) distribution. Hence

e 20

(o) o« [

(1/02) 252+ — 557 [(B=82)"55 " (B—B)+63"] 4.2
g?>0

o[855+ (B = Br)SXN(B — BTN (21)

which is the kernel of a multivariate ¢ density with mean B)\, dispersion S;\* >y and

v* + n degrees of freedom, where 6%* = §3*/(v * +n).
3.3 The Unconditional Smoothing Problem

At this point, the marginal posterior of § can be derived using the results in
Sections (3.1) and (3.2). Since the marginal posterior of A, and the conditional

posterior of  given A, is available, the unconditional posterior of § is obtained as

r(Bly") = / w(Bly™, Mr(My™)dA

where 7(A|y™) is given in (15) and w(B|y™, A) in (21). Although the above integral

cannot be performed analytically, we can state the following result.
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THEOREM 2: Let m(A|y™) be as in (15). Then in the TVR model, the marginal

posterior distribution of f is

—(v"+2n)/2

n 1 Ayt A g n
"Bl o [ [H———gx*(wn)(ﬂ BYSTA(6 -~ ) (ly™)dr. (22)

REMARK 4: If one is interested in the pdf of some subvector of §, for example,
the most current value §,, the posterior is obtained as follows. If we denote the
appropriate subcomponents of ,3 » and ), by [;’n, A and Zn’ , respectively, then from
(21) and Theorem 2, the pdf of B, is

m(Bnly™)
—(1+v™+n)/2

1 A 1 —1 _ A . n
/ [1 e T ET (™). (2)

An important issue at this stage is how the pdf in (22), and also (23), should
be analyzed. The most effective method is to use Monte Carlo (MC) integration
procedures that have been recently applied by Zellner and Rossi (1984), Zellner, Van
Dijk and Bauwens (1988), and Chib, Tiwari and Jammalamadaka (1988), among
others. The general method is developed in Klock and van Dijk (1978), and Geweke
(1987). Application of that methodology to the specific problem at hand can proceed
as follows. Suppose we are interested in obtaining the unconditional moments of the
elements of 3, for example the mean and variance. We can use well known formulas
to compute marginal moments from conditional moments. For example, to compute

the unconditional mean of 3, we have

B = ETBg) = /ﬂ Br(Bly™)ds

=) [ /ﬂ ﬂw(ﬂw",wﬁ] rOWI = [ Barlma. (24)

This can be computed numerically as follows. Let h{)) be an importance density
with the property that it closely approximates 7(A|y™). Further h(}) should be a pdf
from which it is relatively easy to simulate. Let Ay, ..., An be N random draws of A
from h()) where N is a suitably large number. Then the MC estimate of (24) is

- 1 En = m(Aily™
ﬂﬁN;ﬂ)\‘ (h()l\:ij))'a (25)
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where B, is B evaluated at A = );, and m(\;|y™) is the posterior of A evaluated at
A= A,‘, i.e.,

n(Aily™) =

PO, Fortl? (6 + Ty ey ny Fipima,0) 4012
N n F—1/2 * 1 £ —(v*4+n . ’
'11\7 Zi:l W()‘i)(nt=1 t|t_/1,)\,-)(6 + Z;;l yt|t—1,>\;/ft|t—1,>\;) (vr+ )/2/h(/\z)
Note that the denominator of (26) is the MC estimate of the normalizing constant

of m(Aly™).

Now the marginal covariance matrix of § is defined as the sum of the expectation

(26)

of the conditional variance and the variance of the conditional expectation, i.e.,

—yrelmg = [T e n
S =veilg) = [ B man )

+ / (Br— BYBr— B m(My™)dA. (27)
A

where § is defined in (24). Each of these terms may be approximated by sums as in
(25).

When we consider the method described above, it is clear that we have to find
a suitable importance density h(A). If the underlying pdf of A were symmetric, it
may be possible to let the importance density be a student ¢ density with parameters
suitably chosen. This strategy will not work when the pdf of X is nonsymmetric, as in
the example in the next section. Although we have not been able to test this assertion
in a wide array of examples, we are of the opinion that the pdf of A is nonsymmetric,
unless the sample size is large. Thus, symmetric importance functions are unlikely

to be adequate for this problem.

4. An Example

In this section we report some numerical results from a Monte Carlo experiment,
The idea is to illustrate how the methods described in the paper work in practice.

The data for the experiment is generated according to the model

Yt = 2By + €4, er ~ N(0,1),

B = 5Bt—1 + m, m NN(0,05), t=1,2,...,15 (28)
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with B ~ N(.9,1), and =z, distributed as iid Uniform(0, 1) random variables. In
terms of the model of the paper, we have set Bo]o =.9 02 =1, ) = 0.5; and
R0|0 = 1. Fifteen observations are generated from model (28).

Using equation (13), and a prior of (o2, A) that is proportional to 1/0?, the joint
posterior pdf of 0, A and A is reproduced in Figure 1. It is clear that the joint pdf
has the appropriate shape with most probability concentrated in the parameter space
that generated the data.

Figure 1: Joint Posterior Density Function

The marginal pdf of A, from equation (15) is shown in Figure 2. Also shown in
Figure 2 is the pdf of a half normal distribution with parameter § = .24. This pdf
has the form

h(X) = 2—96—9“2/", 0< A< oo, (29)

T
and appears to be an appropriate importance density.
Note that the pdf of A is skewed with fairly heavy tails, and a pronounced peak
in the region around A = 0.5.
Using the half normal importance density specified in (29) we have computed the

conditional and unconditional smoothed estimates of P as described in (25) and (26).
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Figure 2: Posterior PDF of Lambda and Half Normal Approximation
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Legend: 7(\ | y™):
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[The normalizing constant of (A | ¥*) is found by Monte Carlo integration. The
importance function is the uniform density on (0,6) which was used to produce 500
random draws of \.]

At the suggestion of a referee, the estimates are calculated from repeated samples, not
from one Monte Carlo run. By keeping 8, and z, fixed at the values in the previous
examples, 30 samples of size 15 are generated from the model in (28). The estimates
reported in Table 1 are averages of the estimates from the 30 samples. Also reported
is the conditional variance of 8 (i.e., diag o2 2o) witho? =1and A = 0.5, and the
unconditional variance of 4 using (27). The results are summarized in Table 1 which
has seven columns. The first consists of the true values of the components of 3, and
second contains the filtered estimates using A = 0.5. The third and fourth provide
the conditional smoothed estimates of B (ie., ﬂA)\), and the conditional variance of B.
The last two columns contain the unconditional estimates of # and its variance.

In interpreting the evidence in Table 1, we should first note the satisfactory

performance of the unconditional estimate. On graphing in Figure 3, the absolute
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deviations of the estimates from the true parameter, we can conclude that the un-

conditional estimate is, in general, closer to the true value than both the filtered and

conditional estimates.

Figure 3: Absolute Parameter Deviations

(29) is N = 500. The joint prior
e calculations, vx = 0 and §* = 0.
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OBSERVATION

Legend: 0= |3 - f; A=|Brmos—fB; o= |/[§t|t,)\=0.5 — Bl

is taken to be proportional to 1/0?. Thus in th

We also point out that the filtered and conditional estimates in the table above

15. The number of repl‘ications from the half normal

of X and o2

are computed using the value of A that generated the data. When A is unknown,
as in most applications, these estimates can still be computed but with a value of A
that is likely to be incorrect. In such circumstances, it is more reasonable to bear
the extra computational burden, and compute the unconditional estimate, than to
use the conditional estimate based on a misspecified value of A. To emphasize this

point, we have provided in Table 2, the sampling mean squared error (MSE) of the
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conditional estimate using two values of A, i.e., A = 0.5 and A = 5, and the MSE of
the unconditional estimate. The MSE of the optimal estimate, Sx=¢.s5, is, of course,
smaller than that of B However, the MSE of the conditional estimate using an
incorrect value of A is larger than that of §. Although the results below are based
on a limited sampling investigation, we confirmed that similar results are obtained

in other examples. To conserve space, those results are not reported.

Table 2: Sampling Mean Squared Error of the Estimates
Computed from 30 samples of size 15

obs  frzos Br=s B

0.42341 0.70180 0.53698
0.44656 0.81684 0.45471
0.41962 1.02542 0.63801
0.58891 1.06727 0.71121
0.28103 1.04921 0.46559
0.37140 1.52418 0.66745
0.10165 0.51738 0.19686
1.50176 1.14964 1.17638
0.25482  0.79170 0.46704
0.13425 1.57139 0.60643
1.25848 1.55346  1.34032
0.12108 1.60701 0.72236
0.31260 1.01436 0.58318
0.19325 0.85835 0.41076
0.23863 1.14518 0.70925

[ g S G
R oo o D © 00~ O U L N —

5. Conclusion
This paper considers the Bayes smoothing problem in the TVR model and
presents several exact results that can be put to use in applications. It is shown that
Monte-Carlo numerical procedures can be implemented relatively easily to compute
the results in the paper. We are confident that the multiple covariate case can be
handled along the lines described in the paper with only a little extra difficulty. In
future work, we plan to describe the analysis to cover the multiple covariate case.
Finally, we point out that the results in this paper can be directly used to find
the exact distribution of the coeflicients in the filtering problem. After noticing from
(7) that the posterior distribution of 34|t, A is univariate-t, A can be integrated out

using the results in Section 3. We suppress the details.
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